首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2421篇
  免费   94篇
  国内免费   51篇
  2023年   36篇
  2022年   25篇
  2021年   42篇
  2020年   87篇
  2019年   92篇
  2018年   91篇
  2017年   95篇
  2016年   109篇
  2015年   70篇
  2014年   63篇
  2013年   620篇
  2012年   54篇
  2011年   42篇
  2010年   37篇
  2009年   52篇
  2008年   63篇
  2007年   77篇
  2006年   64篇
  2005年   59篇
  2004年   64篇
  2003年   53篇
  2002年   40篇
  2001年   50篇
  2000年   35篇
  1999年   28篇
  1998年   26篇
  1997年   26篇
  1996年   42篇
  1995年   30篇
  1994年   26篇
  1993年   29篇
  1992年   25篇
  1991年   28篇
  1990年   38篇
  1989年   30篇
  1988年   24篇
  1987年   31篇
  1986年   23篇
  1985年   37篇
  1984年   28篇
  1983年   18篇
  1982年   18篇
  1981年   9篇
  1980年   4篇
  1979年   9篇
  1978年   6篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有2566条查询结果,搜索用时 15 毫秒
61.
蓝光是环境中的重要信号因子,可影响微生物特别是真菌的生理周期、形态变化、基因表达,进而影响微生物的代谢活动。在国外,蓝光对微生物的影响研究是一个热点问题,并进行了较深入的研究,已在真菌中发现了一些蓝光受体因子。主要综述了蓝光对真菌影响的一些研究进展。  相似文献   
62.
徐峰  马鸣  吴逸群 《动物学杂志》2006,41(6):139-141
2005年10~12月,在新疆托木尔峰自然保护区用直接观察法对193头次北山羊(Capra ibex)的活动节律和时间分配进行了观察。结果表明,北山羊群冬季的活动规律性较强,呈现双峰型,2个高峰时段为08∶00~08∶30时和16∶30~17∶00时前后,活动频率分别为98.6%和93.3%。同时发现冬季其61%的活动时间用于采食,用于移动和站立的时间分别为19%和15%。这种活动节律可能与光照以及人类放牧干扰有关。  相似文献   
63.
Abstract

Knowledge of the circadian behaviour of young tuatara (Sphenodon spp.) is relatively scarce because tuatara are difficult to observe in the wild. We document diurnal, nocturnal and crepuscular emergence and movements (half‐body movement, walking and running) of three groups of captive juvenile tuatara (2‐ and 3‐year‐old Sphenodon guntheri, and 5‐year‐old S. punctatus). Juvenile tuatara emerge predominantly at night, but move around above ground, mainly during the day and around sunset. Differences in emergence andmove‐ment scores between the three study groups were evident, probably linked with age, species or housing conditions, which were inevitably coupled in our study. We found that 2‐year‐old tuatara in captive conditions emerged less frequently than, but once above ground, moved more than 3‐ and 5‐year‐olds in semi‐captive conditions. Activities in semi‐captive conditions were not correlated with temperature, light or humidity. We conclude that young tuatara may be primarily adapted to nocturnal activity, but thermal restrictions and possible hardwired adaptations to avoid predators and conspecifics may make day‐time movements safer.  相似文献   
64.
The Oxygen activating mechanism of Fusarium lipoxygenase, a heme-containing dioxygenase, was studied. The enzyme did not require any cofactors, such as H2O2, however, both superoxide dismutase and catalase inhibited linoleate peroxidation by Fusarium lipoxygenase. A low concentration of H2O2 caused a distinct acceleration in enzymatic peroxidation. These results indicate that both O2? and H2O2 are produced as essential intermediates of oxygen activation during formation of linoleate hydroperoxides by Fusarium lipoxygenase. This peroxidation reaction was also prevented by scavengers of singlet oxygen (1O2), but not by scavengers of hydroxy 1 radical (OH). Generation of O2? in the enzyme reaction was detected by its ability to oxidize epinephrine to adrenochrome. Moreover, the rate of peroxide formation was greater in the D2O than in the H2O buffer system. These results suggest that the Haber–Weiss reaction (O2?+H2O2→OH?+OH·+1O2) is taking part in linoleate peroxidation by Fusarium lipoxygenase, and the 1O2 evolved could be responsible for the peroxidation of linoleate. H2O2 produced endogenously in the enzyme reaction might act as an activating factor for the enzyme. This possible mechanism of oxygen activation can explain the absence of a need for exogenous cofactors with Fusarium lipoxygenase in contrast to an other heme-containing dioxygenase, tryptophan pyrrolase, which requires an exogenous activating factor, such as H2O2.  相似文献   
65.
Since there is less movement during sleep than during wake, the recording of body movements by actigraphy has been used to indirectly evaluate the sleep–wake cycle. In general, most actigraphic devices are placed on the wrist and their measures are based on acceleration detection. Here, we propose an alternative way of measuring actigraphy at the level of the arm for joint evaluation of activity and body position. This method analyzes the tilt of three axes, scoring activity as the cumulative change of degrees per minute with respect to the previous sampling, and measuring arm tilt for the body position inference. In this study, subjects (N?=?13) went about their daily routine for 7 days, kept daily sleep logs, wore three ambulatory monitoring devices and collected sequential saliva samples during evenings for the measurement of dim light melatonin onset (DLMO). These devices measured motor activity (arm activity, AA) and body position (P) using the tilt sensing of the arm, with acceleration (wrist acceleration, WA) and skin temperature at wrist level (WT). Cosinor, Fourier and non-parametric rhythmic analyses were performed for the different variables, and the results were compared by the ANOVA test. Linear correlations were also performed between actimetry methods (AA and WA) and WT. The AA and WA suitability for circadian phase prediction and for evaluating the sleep–wake cycle was assessed by comparison with the DLMO and sleep logs, respectively. All correlations between rhythmic parameters obtained from AA and WA were highly significant. Only parameters related to activity levels, such as mesor, RA (relative amplitude), VL5 and VM10 (value for the 5 and 10 consecutive hours of minimum and maximum activity, respectively) showed significant differences between AA and WA records. However, when a correlation analysis was performed on the phase markers acrophase, mid-time for the 10 consecutive hours of highest (M10) and mid-time for the five consecutive hours of lowest activity (L5) with DLMO, all of them showed a significant correlation for AA (R?=?0.607, p?=?0.028; R?=?0.582, p?=?0.037; R?=?0.620, p?=?0.031, respectively), while for WA, only acrophase did (R?=?0.621, p?=?0.031). Regarding sleep detection, WA showed higher specificity than AA (0.95?±?0.01 versus 0.86?±?0.02), while the agreement rate and sensitivity were higher for AA (0.76?±?0.02 versus 0.66?±?0.02 and 0.71?±?0.03 versus 0.53?±?0.03, respectively). Cohen’s kappa coefficient also presented the highest values for AA (0.49?±?0.04) and AP (0.64?±?0.04), followed by WT (0.45?±?0.06) and WA (0.37?±?0.04). The findings demonstrate that this alternative actigraphy method (AA), based on tilt sensing of the arm, can be used to reliably evaluate the activity and sleep–wake rhythm, since it presents a higher agreement rate and sensitivity for detecting sleep, at the same time allows the detection of body position and improves circadian phase assessment compared to the classical actigraphic method based on wrist acceleration.  相似文献   
66.
Nasopharyngeal carcinoma (NPC) occurs frequently in southern China. The circadian rhythm of DNA synthesis of a poorly differentiated NPC human cell line (CNE2) was investigated as an experimental prerequisite for designing chrono-chemotherapy schedules for patients with this disease. Twenty-two nude mice with BALB/c background were synchronized alternatively in 12 h of light and 12 h of darkness (LD12:12) for at least 3 wk prior to the transplantation of a CNE2 tumor fragment into each flank (area of ~2×2 mm2). Ten days later, a tumor sample (area of ~5 mm2) was obtained at 3, 9, 15, and 21 h after light onset (HALO) alternatively from different sites in each mouse. Single-cell suspensions were prepared and stained with propidium iodide. Cellular DNA content was measured with flow cytometry. Data were analyzed by ANOVA and cosinor methods. The average proportion of tumor cells in G1, S or G2-M phase varied according to circadian time with statistical significance. The maximum occurred at 9 HALO for G1, 2 HALO for S and 21 HALO for G2-M phase cells. The approximate average distribution patterns of G1 and G2-M phases of cosine curve was 24 h. This was not the case for S-phase cells, which displayed a bimodal temporal pattern. Inter-individual variability in peak time was large, possibly due to relatively sparse sampling time. Nevertheless, no more than 6% of the time series displayed a maximum at 3 HALO for G1, 21 HALO for S and 15 HALO for G2-M. The cell cycle distribution of this human NPC cell line displayed circadian regulation following implantation into nude mice. The mechanisms involved in this rhythm and its relevance to the chrono-chemotherapy of patients deserve further investigation.  相似文献   
67.
Fruit fly Drosophila melanogaster females display rhythmic egg-laying under 12:12?h light/dark (LD) cycles which persists with near 24?h periodicity under constant darkness (DD). We have shown previously that persistence of this rhythm does not require the neurons expressing pigment dispersing factor (PDF), thought to be the canonical circadian pacemakers, and proposed that it could be controlled by peripheral clocks or regulated/triggered by the act of mating. We assayed egg-laying behaviour of wild-type Canton S (CS) females under LD, DD and constant light (LL) conditions in three different physiological states; as virgins, as females allowed to mate with males for 1?day and as females allowed to mate for the entire duration of the assay. Here, we report the presence of a circadian rhythm in egg-laying in virgin D. melanogaster females. We also found that egg-laying behaviour of 70 and 90% females from all the three male presence/absence protocols follows circadian rhythmicity under DD and LL, with periods ranging between 18 and 30?h. The egg-laying rhythm of all virgin females synchronized to LD cycles with a peak occurring soon after lights-off. The rhythm in virgins was remarkably robust with maximum number of eggs deposited immediately after lights-off in contrast to mated females which show higher egg-laying during the day. These results suggest that the egg-laying rhythm of D. melanogaster is endogenously driven and is neither regulated nor triggered by the act of mating; instead, the presence of males results in reduction in entrainment to LD cycles.  相似文献   
68.
Pancreatic cancer (PC), the fourth leading cause of cancer-related deaths, is characterized by high aggressiveness and resistance to chemotherapy. Pancreatic carcinogenesis is kept going by derangement of essential cell processes, such as proliferation, apoptosis, metabolism and autophagy, characterized by rhythmic variations with 24-h periodicity driven by the biological clock. We assessed the expression of the circadian genes ARNLT, ARNLT2, CLOCK, PER1, PER2, PER3, CRY1, CRY2 and the starvation-activated histone/protein deacetylase SIRT1 in 34 matched tumor and non-tumor tissue specimens of PC patients, and evaluated in PC derived cell lines if the modulation of SIRT1 expression through starvation could influence the temporal pattern of expression of the circadian genes. We found a significant down-regulation of ARNLT (p?=?0.015), CRY1 (p?=?0.013), CRY2 (p?=?0.001), PER1 (p?<?0.0001), PER2 (p?<?0.001), PER3 (p?=?0.001) and SIRT1 (p?=?0.017) in PC specimens. PER3 and CRY2 expression levels were lower in patients with jaundice at diagnosis (?<?0.05). Having adjusted for age, adjuvant therapy and tumor stage, we evidenced that patients with higher PER2 and lower SIRT1 expression levels showed lower mortality (p?=?0.028). Levels and temporal patterns of expression of many circadian genes and SIRT1 significantly changed upon serum starvation in vitro, with differences among four different PC cell lines examined (BXPC3, CFPAC, MIA-PaCa-2 and PANC-1). Serum deprivation induced changes of the overall mean level of the wave and amplitude, lengthened or shortened the cycle time and phase-advanced or phase-delayed the rhythmic oscillation depending on the gene and the PC cell line examined. In conclusion, a severe deregulation of expression of SIRT1 and circadian genes was evidenced in the cancer specimens of PC patients, and starvation influenced gene expression in PC cell lines, suggesting that the altered interplay between SIRT1 and the core circadian proteins could represent a crucial player in the process of pancreatic carcinogenesis.  相似文献   
69.
We studied the sleep–wake behavior of mentally retarded people from late winter to early summer at 60°N. During this time the daylength increased 8 h 51 min. The data were collected by observing the sleep–wake status of 293 subjects at 20-min intervals for five randomized 24h periods (=recording days). The intervals during which the individual recording days of the same order (1st, 2nd, etc.) were carried out, were called recording periods. Consequently, there were five recording periods, each containing 293 individual recording days. Even though there was overlap among the recording periods, the median daylength from one period to another increased approximately by 100 min. In the initial statistical analysis, the number of wake–sleep transitions was found to differ significantly among the five recording periods (Friedman test, p<0.001). The mean ranks in the Friedman test suggested that the number of wake–sleep transitions was highest during the 1st and lowest during the 5th recording period. In further statistical analyses using a program for mixed effects regression analysis (mixor 2.0) it was found that the increase in daylength during the study period was associated with a simultaneous decrease of approximately 0.5 wake–sleep transitions in the whole study population (p<0.001). The decrease in the number of wake–sleep transitions was significant only in the subgroups of subjects with a daylength change of more than 350 min between the 1st and 5th recording days (Wilcoxon tests, p<0.005). This suggests that after a marked prolongation of the natural photoperiod, the reduction in sleep episodes was more probable than after smaller changes in daylength. It is concluded that the sleep of mentally retarded people living in a rehabilitation center at a northern latitude is more fragmented in winter than in early summer and that the change is related probably to the simultaneous increase in the length of the natural photoperiod. The sleep quality of persons living in institutional settings might be improved by increasing the intensity and/or duration of daily artificial light exposure during the darker seasons.  相似文献   
70.
Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100?µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice.

Highlights: We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号